

Allergic Rhinitis – when all else fails!

James Gardner

Children's Allergy Nurse Consultant

Food Allergy Immunotherapy Centre, Great Ormond Street Hospital, London

Senior Clinical Lecturer, Newcastle University

Гhe Food Allergy Immunotherapy Centre

What are symptoms of Allergic Rhinitis?

Allergic signs

Denny Morgan lines

Allergic shiner

Nasal crease

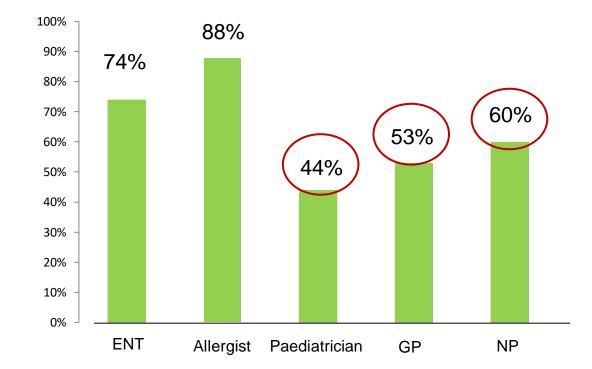
Allergic salute

Allergic crease

Is it Treatment-resistant Allergic Rhinitis?

AR Treatment Satisfaction

62% of patients receiving optimal standard symptomatic treatment experience poor symptoms control


White P et al. *Clin Exp Allerg*y 1998;28:266-70

Compliance and Education

- Easy to use device
- Minimal Sensory Disturbance
- Once daily dosing
- Education
- Device Technique
- Safety of Drug
- Warning of Possible Side Effect

HCPs Awareness of Guidelines

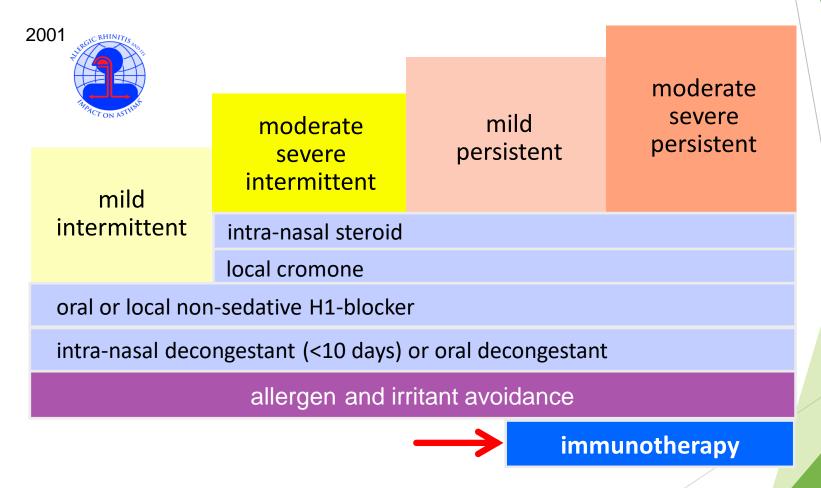
HCPs awareness of professional guidelines for the management of AR

Modified from Meltzer E et al: JACI 2009; 124:S43-70

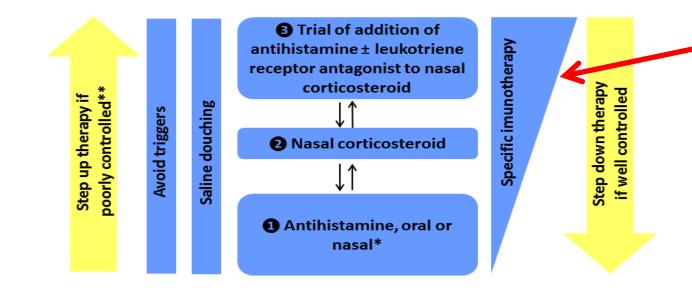
Guidelines for Allergic Rhinitis

Improving allergy care

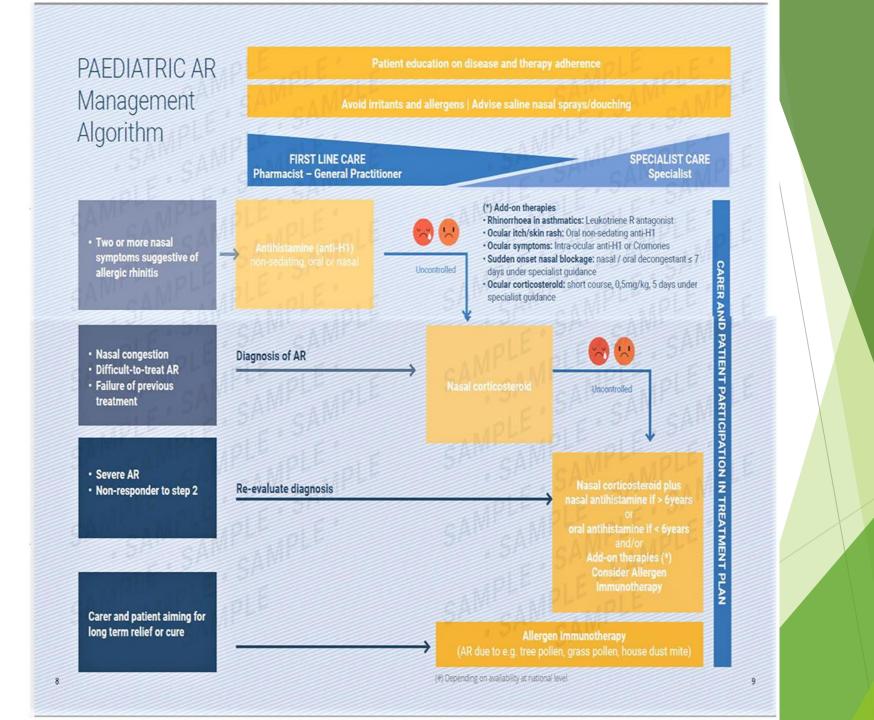
- Scadding G et al CEA, 2008 38, 19–42



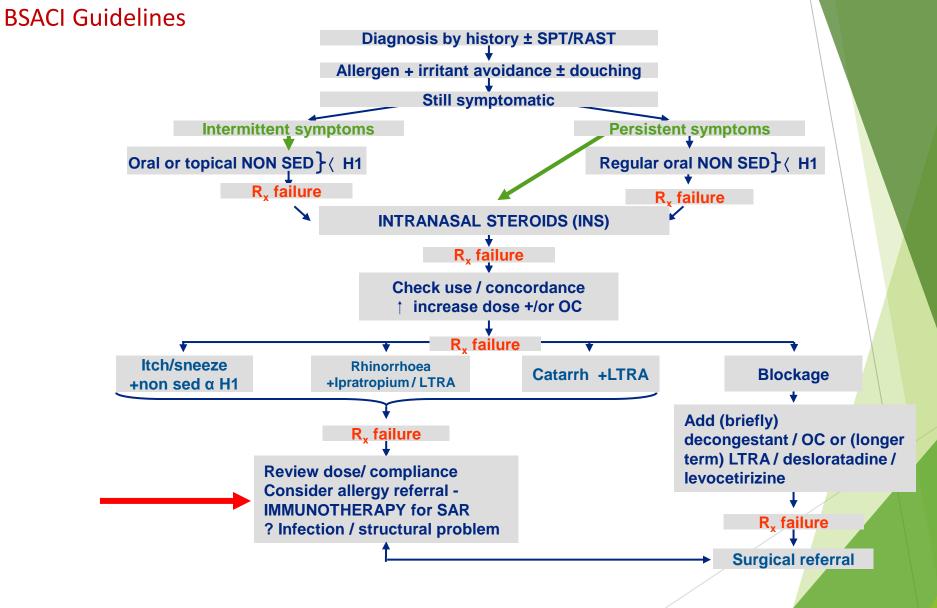
Bousquet J et al JACI 2001 Nov;108(5 Suppl):S147-334.
Bousquet J et al Allergy 2008: 63 (Suppl. 86): 8–160
Brozek JL et al JACI 2010 Sep;126(3):466-76.


Roberts G et al Allergy. 2013 Sep;68(9):1102-16

Treatment of allergic rhinitis (ARIA) Allergic rhinitis and its impact on asthma



www.whiar.org


Paediatric Rhinitis Proposed Therapeutic Approach

Roberts G et al Allergy. 2013 Sep;68(9):1102-16

Treatment of Allergic Rhinitis

Apps for symptom monitoring

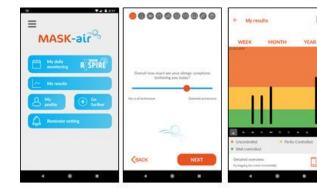
BRIEF COMMUNICATION

10100

Overall how much are your allergic symptoms bothering you today?

WILEY Allergy and a set of the se

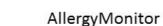
The Allergic Rhinitis and its Impact on Asthma (ARIA) score of allergic rhinitis using mobile technology correlates with quality of life: The MASK study


ARIA

Mot ut at botherapyre	Exc-or optimize

C My symptomic My symptoms	
My modestary	
Altorali	
Dymeta	
My immunationary	0
Your resolution is not helied?	
Alte medications	

2-16 AM


Bousquet J, et al; Allergic Rhinitis and its Impact on Asthma (ARIA) Phase 4 (2018): Change management in allergic rhinitis and asthma multimorbidity using mobile technology. J Allergy Clin Immunol. 2019 Mar;143(3):864-879. doi: 10.1016/j.jaci.2018.08.049. Epub 2018 Sep 29. Erratum in: J Allergy Clin Immunol. 2019 Nov;144(5):1456.

Monitoring of symptoms of allergic rhinitis,

>10 000 downloads in Google Play

MASK-air

....

ALLERGYMONIN

0

Out

Farfetch Designer

Recording of daily hay fever and asthma symptoms medication, and tracking the disease over months. by patients with tracking capabilities over months. >5000 downloads in Google Play

0

Clinical Diary

0.00 000

(m) (A)

Beer. O X Visual Analo

Pollen

- 0

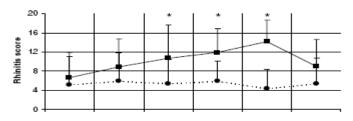
1. MARCH

SURLY ALLERGY RISK

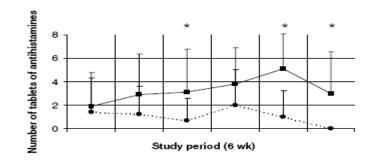
plays the average Allergy Risk for the da

risk to 4-bigh risks and the v

Recording of daily hay fever symptoms plus local pollen predictions for the following three days. >100 000 downloads in Google Play


🚍 🛞 🖬 kalan, kom bu

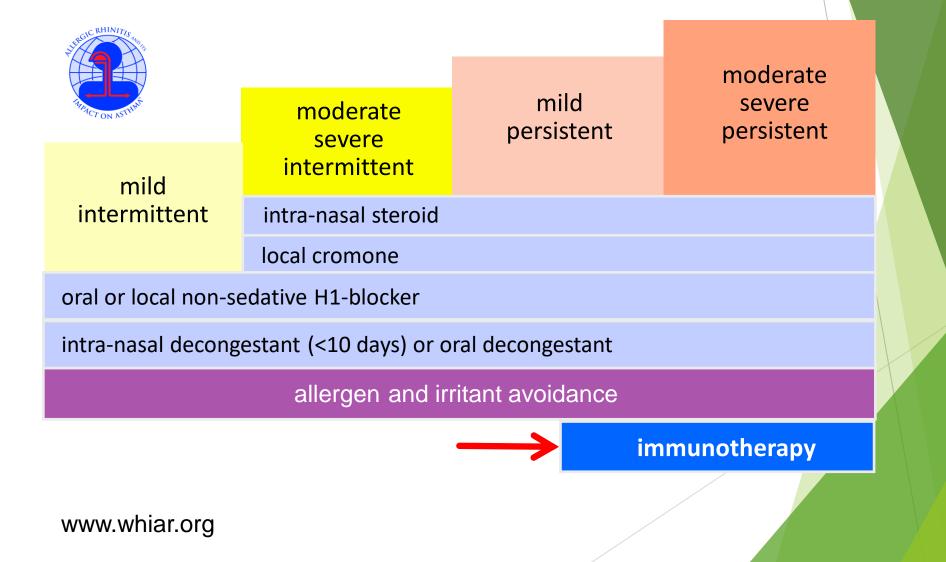
MODEL FOR EUROPE


Adjuvants

- Nasal irrigation
- Omalizumab
- Cellulose powder
- Probiotics

Nasal Irrigation as adjuvant treatment in AR

Study period (6 wk)


Nasal Irrigation improves: Symptoms, RQLQ & MCT

Three-times daily nasal irrigation with hypertonic saline in children (aged 6-12) with seasonal allergic rhinitis significantly reduces Total Rhinitis Symptoms Score and a reduction the amount of rescue anti-H1 in the treatment group.

Garavello W et al; **PAI 2003:14** Hermelingmeier K et al; **Am J Rhinol Allergy 2012:26(5**)

Treatment of allergic rhinitis (ARIA) Allergic rhinitis and its impact on asthma

Indication for Immunotherapy

- At least 1 year history of AR +/- Asthma
- Evidence of sensitisation
- Evidence for clinical relevance of disease related allergen
- Availability of standardised allergen extract

Bufe A and Roberts G CEA 2011;41:1256-62

Benefits of Immunotherapy

Able to induced Immune-tolerance
 Sustained prevention of symptoms
 Able to modify disease progression

 Prevention of new sensitization

- Asthma prevention

What's Available?

Two Routes of Administration

- Used in 75% of children
- Potential Severe Side effects
- Administration by Specialist
- **Contraindicated in Asthmatic

- Used in 25% of children
- Home Therapy
 (only 1st Dose Supervised)
 Can be used in asthmatic

Does it work?

CME review article

This educational activity is supported by an educational grant from GlaxoSmithKline

Comparison of allergen immunotherapy practice patterns in the United States and Europe

Linda Cox, MD,* and Lars Jacobsen, MSc†

Variable	United States	Europe
Regulatory agency	FDA	EMEA
Standardization		
Method	ID _{so} EAL	Nordic
Test technique	Intradermal	Percutaneous
End point	Extract dilution that produces sum of erythema of 50 mm	Extract dilution that produces a wheal equal to the histamine control
Potency determination	Comparison with CBER reference control	Compared with in-house reference
Future focus	Overall allergenicity	Major allergen content
Potency units	BAU, wt/vol, PNU, milligrams of major allergen for ragweed and cat	Varies; each company essentially has its own potent units, some provide milligrams of major allergen
Extract formulation		
Location	Prepared in physicians offices	Prepared at extract manufacturer site
No. of allergens	Multiple	Generally 1
Allergen extract types	Aqueous and glycerinated unmodified extracts,	Approximately 100% depot extract, 20% allergoid,
	alum-precipitated depot extracts	< 5% adjuvants
SLIT	Approximately 5.9% of allergists, no FDA-approved formulation	Approximately 45% of prescribed SIT, solution and tablets available, some are registered
Reimbursement	Covered as a medical service by government and private insurers, prices can be negotiated but private insurers often use government schedule	Varies, extract companies negotiate coverage with each country

Table 4. Companies of the Differences Debuger UC and Economy Allowers Extensis and Counting Internet Debuger Debuger

Abbreviations: BAU, bioequivalent allergy units; CBER, Center for Biologics Evaluation and Research; EMEA, European Medicinal Agency; FDA, Food and Drug Administration; PNU, protein nitrogen units; SIT, specific immunotherapy; SLIT, sublingual immunotherapy.

Allergen injection immunotherapy for seasonal allergic rhinitis (Review)

Calderon MA, Alves B, Jacobson M, Hurwitz B, Sheikh A, Durham S

Symptom scores

itudy r sub-category	N	Treatment Mean (SD)	N	Control Mean (SD)	SMD (random) 95% Cl	Weight %	SMD (random) 95% Cl
Ortolani 1984	8	2.01(0.57)	7	5.86(1.63)	←-	1.78	-3.06 [-4.69, -1.43]
Ortolani 1994	18	0.61(0.12)	17	2.30(0.98)	_	4.45	-2.40 [-3.29, -1.51]
Bousquet 1990	20	63.60(32.50)	18	108.60(33.20)	_ _	5.81	-1.34 [-2.05, -0.63]
Meriney 1986	10	3.51(2.97)	10	8.43(4.24)	_	3.91	-1.29 [-2.27, -0.30]
Brewczynski 1999	10	59.50(32.60)	8	122.40(85.13)		3.84	-0.98 [-1.97, 0.02]
Bodtger 2002	16	2.20(1.00)	17	3.30(1.40)	_ _	5.75	-0.88 [-1.60, -0.16]
Ferrer 2005	22	0.44(0.32)	20	0.80(0.54)	_ _	6.55	-0.81 [-1.44, -0.17]
Jutel 2005	29	3.93(3.28)	28	5.82(3.44)		7.62	-0.55 [-1.08, -0.02]
Walker 2001	17	-1212.00(2632.00)	13	-115.00(1159.00)	— — —	5.61	-0.50 [-1.24, 0.23]
Frew 2006	187	3.31(2.42)	89	4.59(2.93)	-	10.85	-0.49 [-0.75, -0.24]
Varney 1991	19	1531.00(1875.00)	16	2230.00(856.00)		6.14	-0.46 [-1.13, 0.22]
Drachenberg 2001	74	0.75(0.44)	50	0.95(0.41)		9.59	-0.46 [-0.83, -0.10]
Zenner 1997	41	82.24(64.38)	40	115.98(83.67)		8.65	-0.45 [-0.89, -0.01]
Corrigan 2005	77	166.50(114.93)	77	218.00(135.39)		10.12	-0.41 [-0.73, -0.09]
Balda 1998	49	6.56(10.43)	56	9.07(8.19)		9.33	-0.27 [-0.65, 0.12]
otal (95% Cl)	597		466		•	100.00	-0.73 [-0.97, -0.50]

Favours treatment Favours control

Cochrane Database Syst Rev 2007; (1):CD001936.

Allergen injection immunotherapy for seasonal allergic rhinitis (Review)

Calderon MA, Alves B, Jacobson M, Hurwitz B, Sheikh A, Durham S

Medication scores

tudy r sub-category	N	Treatment Mean (SD)	N	Control Mean (SD)	SMD (random) 95% Cl	Weight %	SMD (random) 95% Cl
Dolz 1996	18	6.00(6.07)	10	48.66(17.95)	+-	3.00	-3.56 [-4.82, -2.29]
Varney 1991	19	2146.00(2513.00)	16	14491.00(15066.00)	·	6.36	-1.17 [-1.89, -0.44]
Walker 2001	16	-1308.00(983.00)	13	101.00(1899.00)	_	5.90	-0.94 [-1.71, -0.16]
Brewczynski 1999	10	17.20(10.40)	8	36.80(35.46)	_ _	4.45	-0.76 [-1.73, 0.22]
Bousquet 1990	20	38.60(37.60)	18	66.40(51.70)	_ _	7.10	-0.61 [-1.26, 0.05]
Mirone 2004	11	0.70(1.40)	12	2.20(3.10)	_ _	5.37	-0.59 [-1.43, 0.25]
Bodtger 2002	17	9.90(7.00)	17	14.50(8.50)		6.74	-0.58 [-1.26, 0.11]
Ferrer 2005	22	0.35(0.47)	20	0.92(1.73)		7.53	-0.45 [-1.06, 0.16]
Frew 2006	187	2.93(2.95)	89	4.29(3.53)	-	12.21	-0.43 [-0.69, -0.18]
Corrigan 2005	77	68.58(96.15)	77	101.21(126.01)		11.40	-0.29 [-0.61, 0.03]
Balda 1998	49	9.03(16.03)	56	13.63(19.67)		10.47	-0.25 [-0.64, 0.13]
Drachenberg 2001	74	0.54(0.71)	50	0.71(0.77)		10.82	-0.23 [-0.59, 0.13]
Jutel 2005	29	2.73(4.48)	28	3.78(4.92)		8.65	-0.22 [-0.74, 0.30]
otal (95% Cl)	549		414		•	100.00	-0.57 [-0.82, -0.33]
est for heterogeneity: Chi2	= 33.35, df = 1	2 (P = 0.0009), I ² = 64.0%					
est for overall effect: Z = 4	.54 (P < 0.000	01)					

Favours treatment Favours control

Cochrane Database Syst Rev 2007; (1):CD001936.

Comparison SLIT versus Placebo – Children: Outcome: Symptoms Score

Study or subgroup	SLIT		Placebo		Std. Mean Difference	Weight	Std. Mean Diffe
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,95% CI		IV,Random,9
Bahceciler 200 I	8	0.53 (0.4)	7	0.4 (0.38)		5.3 %	0.31 [-0.71,
Bufe 2004	68	1.54 (0.77)	64	1.59 (0.96)	+	7.3 %	-0.06 [-0.40,
Bufe 2009	117	2.67 (2.38)	121	3.17 (2.14)	-	7.5 %	-0.22 [-0.48,
Caffarelli 2000	17	4.2 (3.7)	17	5.9 (3.8)		6.4 %	-0.44 [-1.12,
Cao 2007	85	0.65 (0.88)	91	2.64 (0.46)	-	7.1 %	-2.85 [-3.27, -
Hirsch 1997	12	0.99 (1.13)	10	0.52 (0.47)		5.8 %	0.50 [-0.35,
La Rosa 1999	16	1.21 (1.66)	17	1.61 (1.56)		6.4 %	-0.24 [-0.93,
Marcucci 2005	13	412.92 (332.55)	11	517.27 (548.18)		6.0 %	-0.23 [-1.03,
Pajno 2003	14	4 (5.18)	13	10 (8.65)		6.0 %	-0.82 [-1.62, -
Rolinck-Werninghaus 2004	39	13.71 (23.12)	38	12.66 (21.65)	+	7.1 %	0.05 [-0.40,
RÅžder 2007	91	2.45 (1.48)	77	2.74 (1.66)	+	7.4 %	-0.18 [-0.49,
Tari 1990	30	8 (1.5)	28	12 (2)		6.4 %	-2.24 [-2.91, -
Valovirta 2006	27	1.5 (1.4)	29	2.2 (1.4)		6.8 %	-0.49 [-1.03,
Vourdas 1998	34	1.07 (1.63)	32	1.38 (2.01)		7.0 %	-0.17 [-0.65,
Wahn 2009	131	3.25 (2.86)	135	4.51 (2.931)	•	7.5 %	0,43 [-0.68, -
otal (95% CI) eterogeneity: Tau ² = 0.59; C st for overall effect: Z = 2.43			690 0000 I); I ² :	=92%	•	100.0 %	-0.52 [-094, -0
					-4 -2 0 2 4		

Sublingual Immunotherapy for allergic rhinitis (Review)

Radulovic S, Calderon M, Wilson D, Durham S

Author, yr (rwf)	Allergen	Patients enrolled	Sit	Design of original trial	Duration Sit	Patients reovaluated	Outcomes at follow-up	Main res	sults at follow-up
Mosbech, 1988 (**)	Grass	39	SCIT	R-DB-C with 2 active arms. Open FU 6 yrs	2.5 yrs	32	Symptoms and drug intake in pollen season	was m	cal benefit of SCIT aintained at 6 yrs I groups
Grammer, 1984 (**)	Ragweed	60	SCIT	Pro-PC, 2 arms + untreated group Open FU 2 yrs	4 mo	63	Symptoms and drug intaka in polien season	In the mainta benefit receivit	2r= season ined a clinical t similar to those ng SCIT, Both s better than
Hedin, 1995 (**)	Cat/dog	32	SCIT	Open, prospective Open FU 5 yrs	3 уга	30	Specific and nonspecific bronchial challenge; subjective evaluation	Persistin reports stoppin respon	g clinical benefit. ed 5 yrs after ng SCIT. Bronchial silveness returned to basetine
Des Roches. 1996 (**)	Mile	40	SCIT	Prospective controlled Open FU 3 yrs	1-8 уга	40	Appearance of asthma symptoms	Most sut asymp yrs. Th effect	elects remained toroatic after 3 le long-lasting is related to the or of SCIT
Dumam 1999 (**)	Orasa	40	SCIT	R-DB-C 3 or 4 yrs SCIT. One group continued for 3 years more	3-4 ym	32	Symptoms and medication scores	After 3 y and m remain group and in contine	eers, symptoms adication scores ed low in the who discontinued the group who ued to receive regne SCT
Di Rienzo 2006 (*)	Min	60	SLIT	Open, non R. control led. Open FU 5 yrs	5 yrs	60	Clinical evaluation of asthma symptoms	The effect asthmo persist	t of SLIT on a symptoms ed up to 5 yrs topping.
Eng 2002 (*)	Grass	28	SCIT	R-DB-PC Open FU 8 yrs	3 yrs	23	Symptom - drug score, individual symptoms, drug intake,	6 Years a discore score the for No diff	
Tahamler 2007 (**)	Mile	137	SUT	R-DB-C 2 or 3 years SUT. Open FU 3 yrs	2-3 yrs	137	Symptom + drug score, individual symptoms, nasal resistance	3 Years / discon groups improv paramy baselin improv	after tinuation both remark in all elers versus se, with better emerk in the 3-
Durtiam 2010 (**)	Grass	308	SLIT	R-DB-PC. Open FU 1 yr	Зута	267	Rhinocontunctivitis score: drug intake	1 Year at discon differen	tinuation, the nce remained in of the former
1arogna	Mite	78	SLIT		3 yrs		59 Symptoms		The 3 groups receiving
2010 (37)				controlled non R. Op FU up to yrs	oen yrs		intake, n eosinopi bronchia challeng	niis, I	SLIT improved significantly vs controls. Clinical benefit maintained for 7 years is groups treated for 4 or 4 years and for 5 years in group treated for 3 year
lusarra 2010 (³³)	parietaria	57	SCI	T Open, controlled nonrando Open FU vrs	mized.		57 Visual anal for symp Severity asthma/i	otoms. of	The clinical improvement persisted for 5 years after stopping SIT in the active group, according to VAS and severity of

Ongoing Efficacy of Treatment

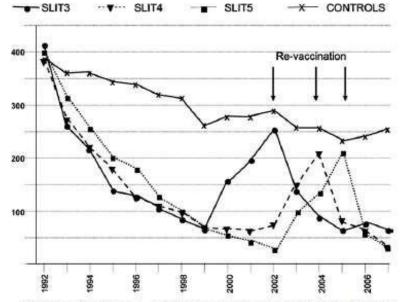


Figure 2. Symptom + medication scores year by year in 4 groups receiving mite SLIT for 3, 4, or 5 years or medications only. The arrows indicate the start of the new course of SLIT when the clinical benefit had vanished (from Marogna et al37).

to VAS and severity of

asthma/rhinitis

Passalacqua G. Ann AllergyAsthma Immunol.2011;107:401–406.

Abbreviatios: R, randomised; DB, double blind; PC, placebo controlled; FU, follow-up.

yrs

Is it safe?

We have been doing it for some time...

Prophylactic inoculation against hay fever. The Lancet, Volume 177, Issue 4580, 10 June 1911, Pages 1572-1573 L. Noon

SAFETY:

- No fatal event have been reported over about 20 years
- Side effects are mostly local, transient and subsiding after the first doses
- The safety of SLIT is overall superior to that of SCIT
- A uniform grading system is required to describe and grade systemic and local side effects.

Safety of Immunotherapy

- ▶ 528 SIT cycles (SCIT 31%) over 10 years.
- Fifty-five percent of all patients had asthma
 (SCIT programmes 24.5% patients had perennial (± seasonal) asthma)
- 75.6% of asthmatics undertaking SCIT had treatments at BTS/SIGN step 2 or above.
- ▶ AEs occurred frequently (50.4% of all SIT cycles) but were mild.
- SLIT- 44.9% local intraoral immediate reactions were most common
- SCIT 28.3% delayed reactions around the injection site
- An asthma diagnosis had no impact on the number of cycles with AEs, or the severity reported. Few cycles (2.9%) were discontinued as a result of AE(s).

Vance, G et al (2011), A national audit of pollen immunotherapy for children in the United Kingdom: patient selection and programme safety. Clinical & Experimental Allergy, 41: 1313–1323

SCIT - Fatalities

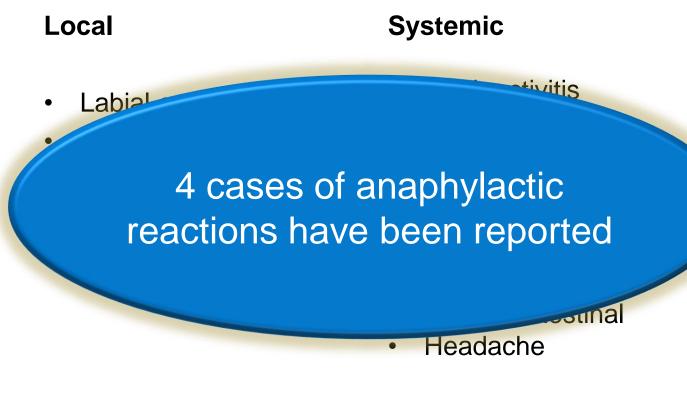
<u>U.K.</u>

- Committee on Safety of Medicines
- 26 fatalities 1957-1986
- 16 / 17 in patients with asthma (poor control)

BMJ 1986; 293: 948-53

<u>U.S.A.</u>

- AAAAI Survey
- 41 fatalities 1990-2001
- 1 per 2.5 million injections
- 15/17 had asthma (poor control)
- 59% occurred during maintenance


Bernstein DI et al. JACI 2004; 113: 1129-36

Side Effects

- Cochrane review for SCIT 0.13% injections adrenaline (0.01% placebo)
- RCT 65/81 patients local reactions no treatment req.
- Systemic reactions mainly rhino-conjuctivitis
- Paediatric Study 25% local reactions
- 27% redness and swelling
- No anaphylaxis

SLIT - Adverse Reactions

• No anaphylaxis

Treatment-related adverse events

AEs are usually brief in duration and resolve soon after initiation

	Duration ^a (minutes) median (P25%-P75%)	Resolution ^b (days) median (P25%-P75%)
Oral pruritus	8.5 min (3.0 - 29.0)	5.5 days (2.0 - 16.0)
Mouth oedema	46.0 min (25.0 - 60.0)	1.0 days (0.0 - 7.0)
Ear pruritus	8.5 min (3.0 - 29.0)	5.5 days (2.0 - 16.0)
Throat irritation	10.0 min (5.0 - 20.5)	13.5 days (0.5 - 22.0)

a. Duration of episode post administration

b. Resolution defined as days from first intake until AE no longeroccurred

Changing the route of immunotherapy administration: An 18-year survey in pediatric patients with allergic rhinitis and asthma

Giovanni Pajno, M.D.,¹ Lucia Caminiti, M.D.,¹ and Giovanni Passalacqua, M.D.²

Table 2 Chang	ging SLIT to S	CIT and vice ver	rsa
		SLIT TO SCIT (n = 340/4285)	$p\chi^2$
%	8.3	7.9	NS
Nonadherence	5 (9.25%)	48 (14.12%)	NS
Side effects	49 (90.75%)	0	< 0.001
Inefficacy	0	292 (85.88%)	< 0.001
Parietaria	29 (4.47%)*	184 (4.29%)*	NS
Grass	18 (2.77%)*	110 (2.56%)*	NS
Dust mite	5 (0.77%)	41 (0.95%)	NS
Olive	2 (0.30)	5 (0.11%)	NS

Numbers, percentages, and reasons for shifting the regimen. *SCIT for single allergen: Parietaria, 10.62%, and grass, 8.32%.

*SLIT for single allergen: Parietaria 11.73%, and grass, 8.95%.

NS = not significant; *SCIT* = subcutaneous immunotherapy; *SLIT* = sublingual immunotherapy. Allergy Asthma Proceedings 2013

Rahul

- 8yrs old
- Severe allergic rhinitis in summer
- Seen in local hospital, maximum treatment commenced
- ▶ GP concerned as not working, 2nd opinion

Quality of Life

- 2 weeks of missed school at peak of pollen season
- Parents had to collect many times due to symptoms
- ► GP gave Kenalog injection
- RQLQ Score: 5.8 (0-6)

When we met him....

Skin Prick Test

Grass Pollen 18mm

 All other allergens tested negative (inc. HDM and Tree pollen)

Specific IgE

Grass >100lu

Medication List

- Fexofenadine
- Montelukast
- Avamys
- Cetirizine
- Seretide (no symptoms out of season)

Which immunotherapy to select?

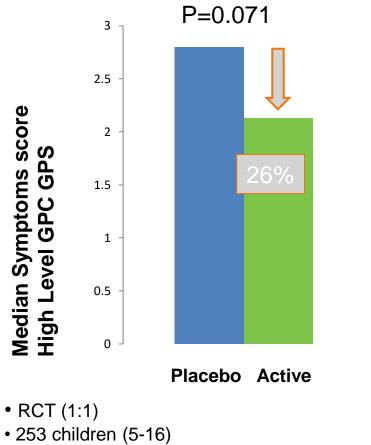
Sublingual Immunotherapy – Sublingual Tablets – Grass Pollen

Grazax-

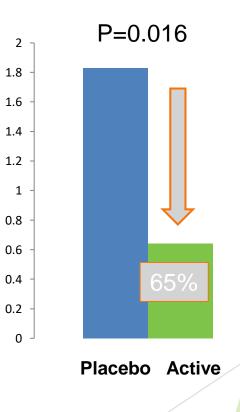
One tablet daily sublingually for 3 years

Licensed

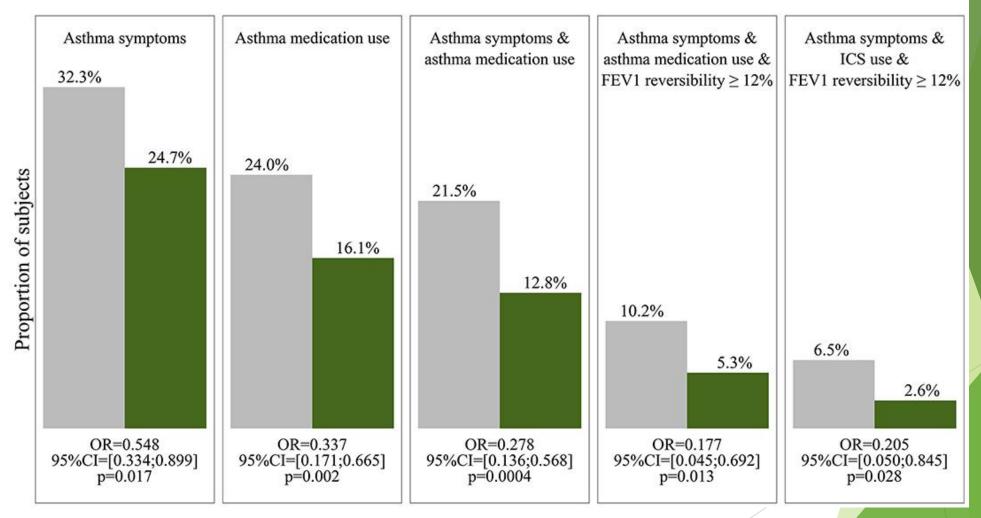
Oralair – 1 tablet daily 4 months prior to season and throughout season


Paediatric updosing over 3 days

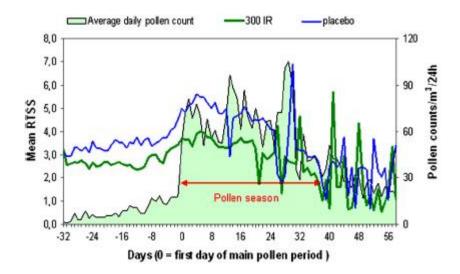
Safety and efficacy in children of an SQ-standardized grass allergen tablet for sublingual immunotherapy


Albrecht Bufe, PhD, MD,^a Peter Eberle, MD,^b Eivy Franke-Beckmann, MD,^b Jürgen Funck, MD,^b Martin Kimmig, MD,^b Ludger Klimek, MD,^c Roland Knecht, MD,^b Volker Stephan, MD,^d Bente Tholstrup, MSc,^c Christian Weißhaar, MD,^b and Friedrich Kaiser, MD^b Bochum, Hamburg, and Wiesbaden, Germany, and Hørsholm, Denmark

Medication –Score


High level GPC

- 75.000 SQU (15µg of Phl p 5)
- 8 weeks pre-seasonal and co-seasonal


Placebo SQ grass SLIT-tablet

Valovirta E, Petersen TH, Piotrowska T, Laursen MK, Andersen JS, Sørensen HF, et al. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy. J Allergy Clin Immunol. (2018) 141:529-38.e13

Efficacy and safety of 5-grass-pollen sublingual immunotherapy tablets in pediatric allergic rhinoconjunctivitis

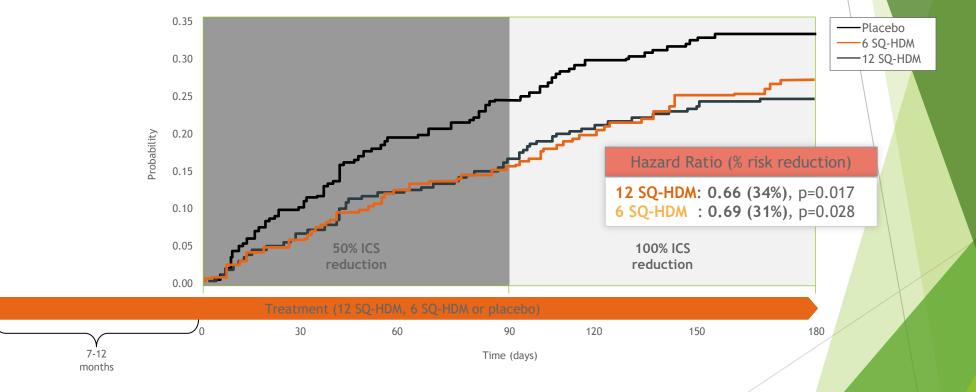
Ulrich Wahn, MD,^a Ana Tabar, MD,^b Piotr Kuna, MD,^c Susanne Halken, MD, DMSc,^d Armelle Montagut, PhD,^e Olivier de Beaumont, MD,^f Martine Le Gall,^f on behalf of the SLIT Study Group Berlin, Germany, Pamplona, Spain, Lodz, Poland, Odense, Denmark, and Meylan and Antony, France

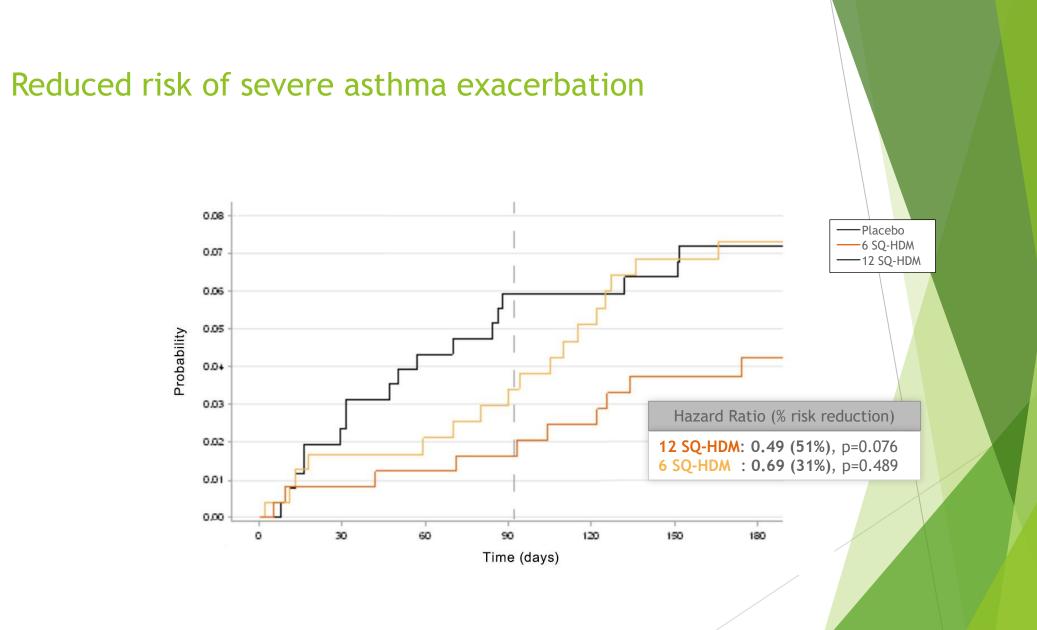
RTSS Median Improvement vs Placebo 39.3%

rescue medication score Median improvement 48.7%

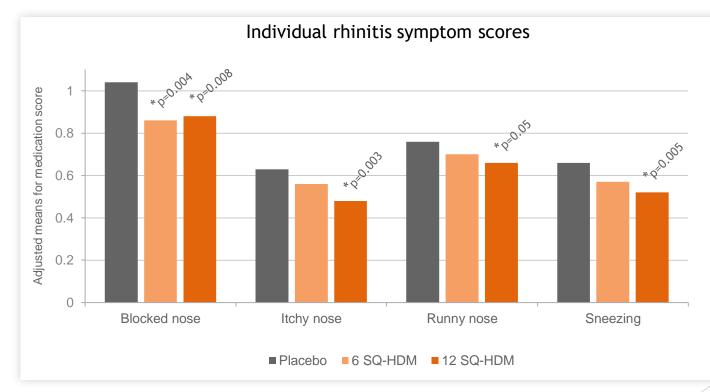
- RCT (1:1)
- 278 Children (5-17)
- 300 IR (20µg of Group 5 m. allergens)
- 4 months pre-seasonal and co-seasonal

Sublingual Immunotherapy -House Dust Mite


Acarizax


One tablet daily under the Tongue for 3 years

*FIRTER PRIM ACARIZAX 12 50-HDM sophilizer cam Lincol


MITRA (MT-04) - Reduced risk of exacerbations during ICS reduction

Time to first moderate or severe asthma exacerbation

MERIT (MT-06) - All individual symptom scores significantly reduced for 12 SQ-HDM

Demoly P et al. J Allergy Clin Immunol. 2016;137(2):444-451

* Statistically significantly different to Placebo

ALK

Sublingual Immunotherapy – Oralvac

Time (min)	Bottle No. 3 (red)
0	1 pump
30	3 pumps
60	5 pumps
90	7 pumps
120	Observation ends

Pollen

Day	Bottle No. 1 (green)	Day	Bottle No. 2 (yellow)	Day	Bottle No. 3 (red)
1	1 pump	5	1 pump	9	1 pump
2	3 pumps	6	3 pumps	10	3 pumps
3	5 pumps	7	5 pumps		
4	7 pumps	8	7 pumps		

All Allergens

Subcutaneous Immunotherapy

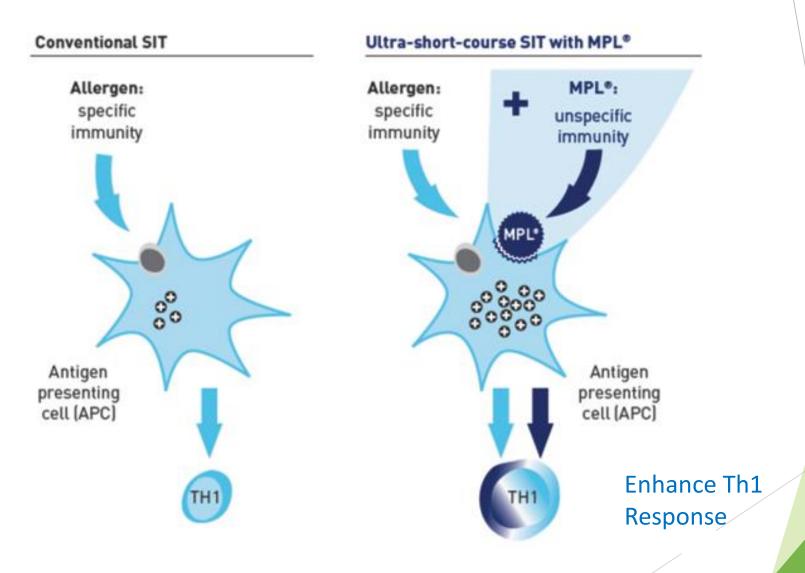
6-12 weeks regimes

Subcutaneous injection

Observation in hospital

Grass and Tree Pollen

Pollinex (Licensed)



Pollinex Quattro

- Short-course allergy vaccine
- Grass or Tree
- 4 pre-seasonal injections
- Been used in Germany since 1999
- Most common used product in children in UK (8 Centres)
- PQ (unlicensed)

Modified Allergen with MPL

Pollinex Quattro

- Pollinex Quattro is administered in increasing doses of allergen at weekly intervals. The dose steps are as follows:
- Step 1 300 SU
- Step 2 800 SU
- Step 3 2000 SU
- Step 4 2000 SU

Copyright © Munksgaard 2001 ALLERGY ISSN 0105-4538

Original article

A well-tolerated grass pollen-specific allergy vaccine containing a novel adjuvant, monophosphoryl lipid A, reduces allergic symptoms after only four preseasonal injections

- Significant reduction in individual symptom scores for eyes and nose (P= 0.03, P= 0.04)
- Trend to reduced medicine use which did not reach significance due to the large variability in the placebo group

Significance level	P=0		P=0		Medic P=0		Eyes,	nose, and P=0.003		Eyes, r	nose, lungs, ar P=0.01	nd medication 3
	Placebo	Active	Placebo	Active	Placebo	Active	Plac	ebo	Active	PI	acebo	Active
Mean	1.12	0.82	1.46	1.21	0.71	0.54	0.95		0.75	0.83		0.65
±SD	0.52	0.58	0.51	0.65	0.77	0.71	0.41		0.44	0.47		0.48
Median	1.13	0.71	1.43	1.09	0.34	0.23	0.9		0.65	0.71		0.54
Difference of medians							-28%			-24%		
Effect size							-0.46			-0.38		
95% Confidence limits of effect size							-0.10	-0.83		-0.01	-0.74	

Efficacy

Efficacy and tolerability of short-term specific immunotherapy with pollen allergoids adjuvanted by monophosphoryl lipid A (MPL®) for children and adolescents

K.J. Drachenberg^a, M. Heinzkill^a, E. Urban^a and S.R. Woroniecki^b

- Mean symptom scores reduced from 7 to 5 (grass pollen) and 9 to 5 (tree pollen) (both p<0.01).</p>
- Medication scores reduced from 3 to 2 (grass pollen) and 3.4 to 2.1 (tree pollen) (both p<0.01).</p>
- A significant increase in IgG was seen that persisted beyond the pollen season p<0.001.</p>

Rahul - Which product?

- Asthma seasonal
- Allergen
- Patient Choice

Opted for SCIT

Pre-Injection

- Observations (BP, Pulse, RR)Lung function and PEFR
- Antihistamine check they have taken a dose of cetirizine (0.5mg/kg maximum dose 10mg). At home or at least 30mins prior to injection
- Consent Local reactions are common, 30%

Our Experience - SCIT

Local Reactions in 30% and no systemic reactions

Reaction	Adjustment
Local reaction > 10 cm in diameter (swelling)	No increase in dose, the dose of the previous injection should be repeated, possibly reduce the dose
Mild to intense systemic reaction	Go back 1 stage in the posology regimen or start again from the beginning
Severe systemic reaction, anaphylactic shock	The doctor should review the treatment indication

First Year of Treatment

- Remained on treatment
- No breakthrough symptoms
- No school/work days missed
- No asthma inhaler required.
- RQLQ Score = 2.9 (0-6)

Carol

- 14yrs old
- Severe Allergic Rhinitis
- Severe Keratoconjunctivitis
- (under Eye Hospital)

When we met her?

<u>Skin Prick Test</u> Birch Pollen 18mm Tree Pollen 14mm Grass 3mm

Specific IgE Birch >100iU Tree 88.4 Grass 1.45 <u>Medication</u> Cetirizine Avamys Montelukast Piriton (at night)

<u>Eye medication</u> Dexamethasone drops Antihistamine drop

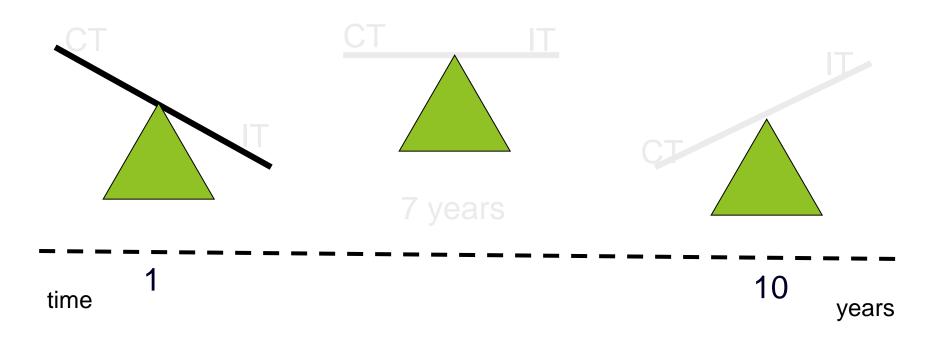
Intraoccular injections

Quality of Life

- Frequent absence from school (mainly embarrassment of eyes)
- Drop in examination results
- RQLQ Score = overall 4.0
- Occular Symptoms = 6

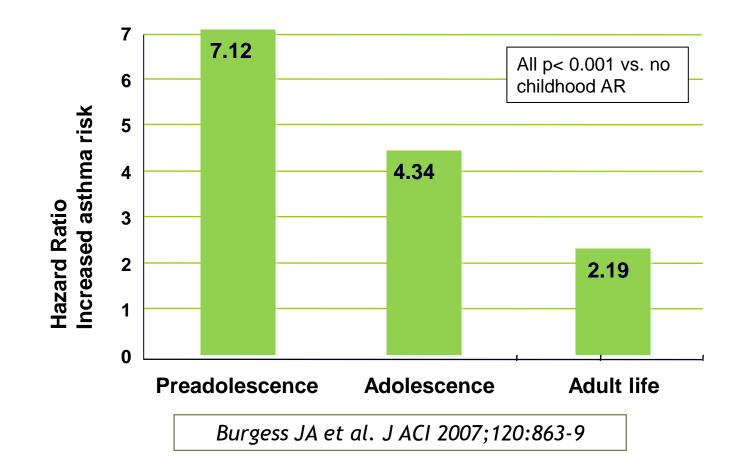
First Year of Treatment

- No school missed, grades comparable with winter exams
- Remained on medication no need for steroid eye drops. (except 1 week when camping!)
- RQLQ Score = overall 2.5
- Occular Symptom Score = 3.6



Let's talk money!

IT cost effective in asthmatic patients with pollen & HDM allergy


Cost of Immunotherapy (IT) vs Conventional Therapy (CT) at 1, 7 & 10 years

Schadlich PK, Brecht JG. Economic evaluation of specific immunotherapy versus symptomatic treatment of allergic rhinitis in Germany. Pharmacoeconomics 17(1), 37-52 (2000).

Childhood allergic rhinitis increases the risk of developing asthma

Childhood allergic rhinitis has been associated with a significant 2-7 fold increase in the incidence of asthma in later life

Immunotherapy clinic

Original Article

Standards for practical allergen-specific immunotherapy

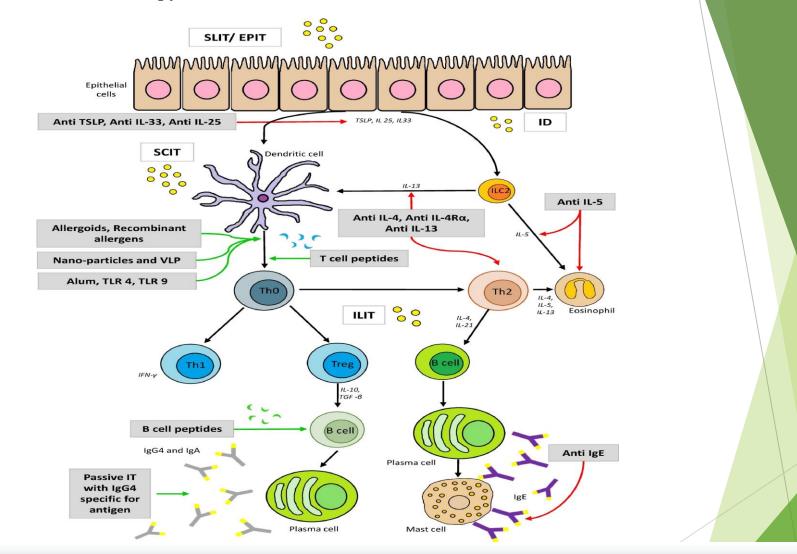
E. Alvarez-Cuesta, J. Bousquet, G. W. Canonica, S. R. Durham, H.-J. Malling, E. Valovirta

EAACI, Immunotherapy Task Force

Allergy 2006: 61 (Suppl. 82): 1-20

The future....

Climate Change & Rhinitis



- Increases in temperature lead to:
 - Earlier onset of and longer pollination seasons
 - Migration of stinging and biting insects into new environments, and increased population of existing insect species
 - Changes to crop patterns, with the potential to introduce new allergenic pollens into the atmosphere
 - New food proteins in the local diet, and
- Increases in humidity associated with higher temperatures will lead to increased numbers of cockroaches, house dust mites, and molds, and, thus, "allergen load".
- New pollen and mold sensitizations lead to increased prevalence and attacks of allergic rhinoconjunctivitis and asthma; longer pollen seasons lead to increased duration of symptoms.

Interventions	Tools/Drugs	Description	Administration route
Patients' education	MASK-allergy diary	-	Smartphone/Internet
Pharmacotherapy	ABH	Arginase inhibitor 2(S)-amino-6- boronohexanoic acid	Inhala
	MP29-02	Combination nasal spray of azelastine hydrochloride and fluticasone propionate	Intranasal
Allergen immunotherapy	Subcutaneous immunotherapy	Lolium perenne peptides/ recombinant B-cell epitopes	Subcutaneous
	Sublingual immunotherapy	Grass allergen peptide/house dust mite tablet	Sublingual
	Intra-lymphatic immunotherapy	Extracts of grass and birch pollen, house dust mites, dog or cat allergen	Intra-lymphatic
Biologics	Omalizumab	Anti-IgE	Subcutaneous
	Dupilumab	Anti-IL4Rα	Subcutaneous

TABLE 1 New treatments under investigation/development for AR

Meng Y, Wang C, Zhang L. Advances and novel developments in allergic rhinitis. Allergy. 2020;75:3069-3076 Mechanisms of immunotherapy and mechanistic effects on new

Gunawardana ND, Durham SR. Ann Allergy Asthma Immunol. September 2018;121(3):293-305

Impact of IgE-sensitivity to profilins and other cross-reacting molecules on immunotherapy prescription

Rhinitis, sinusitis, and upper airway disease

The effect of component-resolved diagnosis on specific immunotherapy prescription in children with hay fever

Giovanna Stringari, MD,^{a,b}* Salvatore Tripodi, MD,^c* Carlo Caffarelli, MD,^b* Arianna Dondi, MD,^{d,e} Riccardo Asero, MD,^f Andrea Di Rienzo Businco, MD,^c Annamaria Bianchi, MD,^g Paolo Candelotti, MD,^g Giampaolo Ricci, MD,^e Federica Bellini, MD,^e Nunzia Maiello, MD,^h Michele Miraglia del Giudice, MD,^h Tullio Frediani, MD,ⁱ Simona Sodano, MD,ⁱ Iride Dello Iacono, MD,^j Francesco Macrì, MD,ⁱ Ilaria Peparini, MD,ⁱ Carlotta Povesi Dascola, MD,^b Maria Francesca Patria, MD,^k Elena Varin, MD,¹ Diego Peroni, MD,^m Pasquale Comberiati, MD,^m Loredana Chini, MD,ⁿ Viviana Moschese, MD,ⁿ Sandra Lucarelli, MD,ⁱ Roberto Bernardini, MD,^o Giuseppe Pingitore, MD,^p Umberto Pelosi, MD, PhD,^q Mariangela Tosca, MD,^r Anastasia Cirisano, MD,^s Diego Faggian, Biol Sci,^t Alessandro Travaglini, MSc,^u Mario Plebani, MD,^t and Paolo Maria Matricardi, MD^a*: The Italian Pediatric Allergy Network (I-PAN) Berlin, Germany, and Parma, Carpi, Rome, Bologna, Milan, Ascoli Piceno, Naples, Benevento, Verona, Empoli, Iglesias, Genoa, Crotone, and Padua, Italy

J Allergy Clin Immunol 2014;134: 78-

Allergen Components - cross reactivity

Pollens	Primary sensitization	Cross-reactivity
Ragweed	Amb a 1	
Mugwort	Art v 1, Art v 3	Art v 3
Parietaria	Par j 2	Par j 2
Plantain or Ribwort	Pla l 1	Pla I 1
Timothy	Phi p 1, Phi p 5, Phi p 6	Phi p 4, Phi p 7, Phi p 11, Phi p 12
Bermuda grass	Cyn d 1	Cyn d 1
Birch	Bet v 1, Bet v 6	Bet v 1, Bet v 2, Bet v 4
Вее	Api m 1, Api m 4	CCDs
Wasp	Pol d 5, Ves v 1, 5	Ves v 2, CCDs
House dust mite	Der p 1, Der p 2, Der f 1, Der f 2, Der p 23	Der p 10

3 patients with symptoms in UK in April-May and a positive SPT/IgE to whole grass and birch pollen extracts

Patient 1:

Patient 2:

Specific-lgE

- Phlp1

- Phl p 5

- Phl p 12

Specific-lgE

- Phl p 1

- Phl p 5

- Bet v 1

Patient 3:

• Specific-IgE

- Bet v 1

- Bet v 2

3 patients with symptoms in UK in April-May and a positive SPT/IgE to whole grass and birch pollen extracts

Patient 1:

Grass pollen SAR

- Specific-lgE
 - Phl p 1
 - Phl p 5
 - Phl p 12 (Bet v 2)

Patient 2:

Grass and birch SAR

- Specific-lgE
 - Phl p 1
 - Phl p 5
 - Bet v 1

Patient 3:

Birch pollen SAR

- Specific-lgE
 - Bet v 1
 - Bet v 2 (Phl p 12)


Patterns of HDM sensitization and implications for AIT

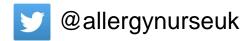
 1300 HDM allergic patients were assessed for 12 purified allergens from Der p or Der f across Europe, Japan and North America

Patterns of HDM sensitization and implications for AIT

group 1-/ group 2+

extracts with both major allergens

Immune To


WILEY Allergy

EAACI Guidelines on Allergen Immunotherapy: House dust mite-driven allergic asthma

loana Agache¹ (b) | Susanne Lau² | Cezmi A. Akdis^{3,4} | Sylwia Smolinska^{5,6} | Matteo Bonini⁷ | Ozlem Cavkaytar⁸ | Breda Flood⁹ | Pawe Gajdanowicz⁵ | Kenji Izuhara¹⁰ (b) | Omer Kalayci¹¹ | Ralph Mosges¹² (b) | Oscar Palomares¹³ | Nikolaos G. Papadopoulos^{14,15} (b) | Milena Sokolowska^{3,4} (b) | Elisabeth Angier¹⁶ | Montserrat Fernandez-Rivas¹⁷ | Giovanni Pajno¹⁸ | Oliver Pfaar¹⁹ (b) | Graham C. Roberts^{20,21,22} (b) | Dermot Ryan^{23,24} (b) | Gunter J. Sturm^{25,26} (b) | Ronald van Ree^{27,28} | Eva M. Varga²⁹ (b) | Roy Gerth van Wijk³⁰ (b) | Juan José Yepes-Nuñez³¹ (b) | Marek Jutel^{5,6}

Any Questions?

James Gardner Children's Allergy Nurse Consultant jgardnerallergy@gmail.com

The Food Allergy Immunotherapy Centre